
API Deobfuscator:
Identifying Runtime-
obfuscated API calls via
Memory Access Analysis

2015. 3. 26.
Seokwoo Choi

• Runtime API obfuscation

• Memory access analysis

• Identifying original API functions

• Patching obfuscated API calls

• Analyzing deobufscated binary

• Related work

• Conclusion

Overview

• Code obfuscation is applied on

— Source code

— Object file

— Executable file

— In-memory executable file image

Run-time API Obfuscation

Compile-time obfuscation

Run-time obfuscation

• Runtime code obfuscation techniques embed
obfuscation engine in executable file and apply
code obfuscation techniques on memory
loaded executable file image

• Types of obfuscating transformations are
selected randomly so that obfuscated binary
image is different each time a packed file
executes

Run-time API Obfuscation

• Call addresses and obfuscated function code is
changing for each execution

Run-time API Obfuscation

……

……
1st time user32.MessageBoxA is obfuscated

……

……
2nd time user32.MessageBoxA is obfuscated

• Without runtime API obfuscation, setting
breakpoint on API function works

API Obfuscation Example

After VMP
Packing

No change in
API function code

• With runtime obfuscation, API function is
obfuscated and hidden

API Obfuscation Example

After Themida
Packing

……

……
user32.MessageBoxA is obfuscated

Original user32.MessageBoxA

Calling
Obfuscated
API function

• Observation

— Each function is obfuscated in sequence

— For each API function, every instruction is read and
obfuscated instructions are written

How to deobfuscate API calls?

Observation: Obfuscation Process

user32.dll

MessageBoxA
Code

Obfuscated
MessageBoxA

Code

Temporary buffer
MessageBoxAMessageBoxA

MessageBoxAMessageBoxA

MessageBoxAMessageBoxA

MessageBoxAMessageBoxA

MessageBoxAMessageBoxA

MessageBoxAMessageBoxA

MessageBoxAMessageBoxA

…………

MessageBoxAMessageBoxA

a.exe

.text

.idata

call 0x4D0000

Obfuscated call target patch

Originally
MessageBoxA

Allocated
memory block

for obfuscated DLL

402000 4D0000

• Idea

— Relate memory reads on API function code and
corresponding memory writes on obfuscated code

• (Original API function address  Addresses of obfuscated
API function)

— Recover original API function by the obfuscated call
target address

Identifying Original API Function

• API function memory reads are clustered

— Memory reads occurs every byte in an original API
function code

Memory Access Analysis

Memory R/W Traces

• Approximate API function memory writes

— Record every memory write before the next API
function or DLL reads

— Limit the number of memory write

Memory Access Analysis

Write Addresses between
Two API function reads

Obfuscated Function
Code Addresses

Obfuscated API
call target
addresses

• Implemented as a Pin tool

— Records memory reads on API functions

— Records memory writes on newly allocated memory
block

— Construct a map from each API function to memory
write addresses (a superset of obfuscated code
addresses)

— Pause at OEP

Building Memory Access Analyzer

• If an address in written memory block is
executed, the address is a candidate of OEP

— Check written memory blocks (1 block = 4 Kbytes)
to save memory

— OEP is in the original executable file sections

Building Memory Access Analyzer

Packed
Section

Additional
Section by
Themida

Unpacked
Section

Additional
Section by
Themida

Unpack code is
executed

Unpacked
instruction
is written

Execution address
Of written blocks

• Identifying obfuscated calls that use direct
addresses

— At OEP, search for all external call (to another
memory segments) from original executable section

— Pattern matching is used to identify external calls

• Matched patterns may contain misinterpreted bytes

• After target address resolution, misinterpreted
instruction disappears

Identifying Obfuscated API Call

— If the call targets are in the constructed map from
obfuscated addresses to API function, modify call
targets to the original API function address

— Generate a text file that contains resolved API
function calls and OEP

Identifying Obfuscated API Call

• Identifying obfuscated calls that use indirect
address

— Some call instructions use register indirect calls
ex) call EDX

— Those registers are assigned with obfuscated API
address in IAT

— But original segments (.text, .idata, …) are merged
into one segment

Identifying Obfuscated API Call

— Identify a memory block that contains successive
obfuscated API function addresses

— Save IAT resolution information that maps
referenced addresses to original API function name

Identifying Obfuscated API Call

• Example: Generated text file

Identifying Obfuscated API Call

Addresses are in RVA

• How to debug obfuscated binary?

— Use a debugger to execute a packed binary until
OEP and patch obfuscated API call addresses

— Use the pin tool to execute a packed binary until
OEP and attach a debugger to the process

Resolving Obfuscated API Call

• Attaching a debugger to the obfuscated process

— Implement anti-anti-attach techniques to the
analyzer

• Protect ntdll.DBGUiRemoteBreakin and
ntdll.DBGBreakpoiont from patching

• Prevent executing ntdll.NtSetInformationThread setting
ThreadHideFromDebugger flag

— Need to disarm monitoring threads

Resolving Obfuscated API Call

• Generating a debugger script to resolve API calls

— The text file generated by the memory access
analyzer contains OEP, resolved obfuscated
addresses

— Implemented a python script to generate an ODBG
script that execute until OEP and resolve obfuscated
addresses

Resolving Obfuscated API Call

• ODBGScript Example

Resolving Obfuscated API Call

……

……

• Memory access analyzer

— OEP Detector + API call resolver

— Built as a pin tool (VC 2013, Intel pin 2.14)

— Works well on Windows 7/8/8.1 x86/64

— Anti-anti-attach capability to attach a debugger

• ODBGScript generator

— A python script to generate ODBGScript that
execute until OEP and resolve obfuscated API
addresses

Implementation

Debugging Obfuscated Binary

Before deobfuscation after unpack

Debugging Obfuscated Binary

After resolving obfuscated addresses,
Original API call is recovered

Analyzing Deobufscated File

Disassembled by IDA on dumped file

• Obfuscation pattern based approach

— Themida/Winlicense Ultra Unpacker 1.4

• ODBGScript to unpack Themida & Winlicense file

• Need to understand whole script to fix problems

• Need new version when obfuscation pattern changed

• Optimization based approach

— Possible to optimize dynamic instruction traces

— Hard to get the whole function code because of
anti-disassembly

Related Work

• Deobfuscator for virtualization-obfuscation

— Backward slicing on API parameters - Koogan et al.
(CCS ’11)

— Taint analysis to recover CFG – B. Yadegari et al.
(S&P’15)

— Optimizing code by clustering – J. Raber
(BH USA ’13)

Related Work

• DBI detection is possible

— Execution behavior is different (BH USA’14
Defeating the transparency feature of DBI)

• Memory access pattern can be changed

— Obfuscators can alter memory access patterns

• Unable to detect API function obfuscated by
virtualization macro

Limitation

• Building deobfuscator based on emulators

— Avoid DBI detection

• Resolving virtualization obfuscated API calls

— Statically identify API calls by code emulation

— Utilize dynamic trace to resolve executed API calls

Future Work

• Obfuscated Malware Analysis

— Environment

• Windows 7 x86 on VMWare

• Pin 2.14

• OllyDBG 1.10 with StrongOD, Phant0m

— Debugging

— Disassembling (decompiling)

Demo

