
Comprehensive
Virtual Appliance Detection

at Web Script, Application, and Kernel Levels

 Kang Li kangli@uga.edu
Xiaoning Li ldpatchguard@gmail.com

About us
}  Kang

}  College Educator

}  Xiaoning
}  Security Researcher

The Virtualization World

 Guest OS

Applications

Hypervisor / VM Platform

Physical Machine

The Virtualization World
}  Popular Virtual Machine Platforms

Virtual Machines versus Appliances

}  Virtual Machines

}  Generic guests
}  Often run multiple

Apps in one guest

}  Virtual Appliances
}  Specially built guests
}  Optimized to specific applications

}  Pre-configured OS and App stack
}  Isolations

 Guest VM

App1
App2

App3

 Guest VM

App1
App2

App3

Hypervisor

Physical Machine

Guest
VM

Hypervisor

Physical Machine

App1

Guest
VM

App1

Guest
VM

App1

Guest
VM

App1

Guest
VM

App1

Why Detecting Virtual Appliances?

http://www.cloudlinux.com/blog/clnews/vps-hot-or-not.php

In the past

Motivation to
detect VMs …

Why Detecting Virtual Appliances?

}  Now, the Emerging Needs are:

}  Avoid Malicious VM Emulators
}  Is my program running on hardware or a VM rootkit?

}  Evade Detection
}  Is the program being evaluated in a specific VM environment?

How to Detect Virtual Appliances?

Detection of Virtual Appliances

}  For Virtual Appliances that allow to run arbitrary programs
}  Conventional VM detection technique applies
}  A rich set of prior works

http://strategictrends.ca/
http://comictan.com/

Detection of Virtual Appliances

}  But what if the appliance is for a specific application?
}  For example, Browser, PDF, Office …
}  The detection has to be done through application scripts.
}  Most of the prior works on VM detection do not apply.

http://www.hornungs-webshop.de/ http://bennisinc.wordpress.com/

Solution:

Appliance Detection through Display Properties

webserver.computoredge.com

Why Focusing on Display Properties
}  Display needs to be exported to the “sandbox-ed”

applications.

}  But, lack of hardware support for graphic virtualization

}  Many appliance instances running in one physical box
}  Difficult for PCI Passthrough to multiple VMs

webserver.computoredge.com

Virtual Appliance Detection Overview
}  Goal:

}  Detecting the use of VM by Display Properties

}  Sample Approaches:
}  Screen Properties

}  Resolution, color depth, and refresh rate

}  Support of “Advanced” Display Functions
}  HTML5/WebGL

}  Performance Measurement
}  3D rendering capability

Scenario #1: Detection Using Resolution
}  Using Java to obtain list of display properties

}  Screen Size, Refresh Rate, Color depth

}  Example: Windows 8 on a Lenovo PC, VMware, and
VirtualBox

Host VMware
Player

VirtualBox

Number of Resolution
Supported

38 25 4

Refresh Rate 56, 59, 60, 70,
72,75

64 60

Unique Screen Size 1041x1041

Scenario #1: Detection Using Resolution
}  How to Get Screen Properties

Example: the Monitors methods in Adobe Javascript API

}  Monitors Method

}  Primary
}  Secondary
}  Tallest
}  Widest
}  …

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf

}  Monitor properties
}  colorDepth
}  isPrimary
}  Rect (boundary of virtual display)
}  workRect

Scenario #1: Detection Using Resolution
}  How to Get Screen Properties

Example: the Monitors methods in Adobe Javascript API

}  Monitors Method

}  Primary
}  Secondary
}  Tallest
}  Widest
}  …

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf

}  Monitor properties
}  colorDepth
}  isPrimary
}  Rect (boundary of virtual display)
}  workRect

More properties are available via the Monitors Method.

Scenario #2: Detection Using the
Support of HTML5 Features

}  Virtual Appliance might Not bother to implement
“advanced” graphic support for web scripts.

}  Example: Firefox 27.0.1 running on a Windows Host,
VMware, and VirtualBox

Scenario #2: Detection Using the
Support of HTML5 Features

Firefox 27.0.1 on Win 7
Physical Host

Firefox 27.0.1 on Win 7
Virtualbox (with add-on)

Same version of Firefox Browser in Host and VM

Scenario #2: Detection Using the
Support of HTML5 Features

}  Virtual Appliance might Not bother to implement
“advanced” graphic support for web scripts.

}  No Support WebGL è Virtual Appliance
}  Possible False Positives …

Scenario #3: Detection based on 3D
Performance

}  Observations:

}  Smooth 3D graphic display heavily relies on hardware support.

}  Even with 3D support, browser performance in VM falls far
behind modern host systems.

}  Often, multiple instances of Virtual Appliances are running on
the same physical box.

Performance of Running this Script

http://media.tojicode.com/q3bsp/

Quake 3 in WebGL

Observing Frame Rate of Quake 3

Chrome (3D)

Chrome (no 3D)

IE (3D)

IE (no 3D)

Concurrent VM Instances

Fr
am

es
 p

er
 S

ec
on

d

Frame Rate for running the same web script

Ability to Render Concurrent 3D Objects

Concurrent VM Instances

N
um

be
r o

f 3
D

 B
ox

es

Number of 3D objects rendered in a fixed frame rate (15 FPS)

Chrome (3D)

Chrome (no 3D)

IE (3D)

IE (no 3D)

Scenario #3: Detection by 3D Performance
}  Strategy

}  Dynamically increase the number of 3D objects and detect the
frame rate
}  500 ~ 5000 Objects
}  Expect to have FPS > 30 FPS

}  Disguise test under popular games in WebGL
}  E.g. Quake3 in WebGL

Scenario #3: Detection by 3D Performance
}  False Positives

}  Slow Physical Machines
}  Atom Box < 500 objects, 15 FPS>
}  Qualcomm Quad-core Table < 500 objects, 30 FPS>

}  Implication to Virtual Appliance Detection

How to Get More Accurate VM Information?

If VA Chooses to Enable Native Code
}  Example: ActiveX

}  Close to run a user-level application

}  Although not a good idea for security-aware users to enable,

}  likely enabled in those appliances that analyze malware

}  Likely lowered the Trustzone levels to enable automatic analysis

Peek Host Info from ActiveX
}  Using Predefined APIs

}  WMI (windows management instrumentation)

}  WBEM (web-based enterprise management)
}  Allow to grab systems, networks, devices information.

}  Using Known Vulnerabilities in IE/ActiveX
}  Beyond the scope of this talk

Getting Host Device Info from ActiveX
}  Using the SWbemLocator

}  Scripting API from WMI

…
var locator = new ActiveXObject("WbemScripting.SWbemLocator");
var service = locator.ConnectServer(".");
var properties = service.ExecQuery(

 "SELECT * FROM Win32_DeviceMemoryAddress");
var e = new Enumerator(properties);
var p = e.item();
…

// Available Properties: Device Description, Name, Memory Address …

Sample Output from Using SWbemLocator

Sample Output from SWbemLocator

Running on Host

What if Appliance choose to emulate
none-VM specific devices?

What if Appliance choose to emulate
none-VM specific devices?

No Hypervisor names shown in Device
and Drive info.

Real device drivers are used.

Popular Virtual Devices in VM

}  Virtualbox

}  NIC: Intel PRO/1000 MT
(82540EM)

}  Audio: ICH AC97

}  IDE: Intel 82371 PIIX4 IDE

}  SATA: Intel 82801HBM/HEM

}  Vmware Fusion

}  NIC: AMD PCnet32 LANCE

}  Audio: Ensoniq ES1371

}  IDE: Intel 82371 PIIX4 IDE

}  SCSI: LSI Logic 53c1030

Difficult to make the behavior of
Virtual Device == Physical Device

Virtual-Physical Inconsistency Example
}  Intel PRO/1000 MT (82540EM)

}  Popular Virtual NIC

}  After the following I/O event
 mmio_write (ICS [0xC8], 0x4)

Real NIC
}  Register ICS: 0x00000004

Virtual NIC
}  Register ICS: 0x80000004

Virtual-Physical Inconsistency Example2
}  Intel PRO/1000 MT (82540EM)

}  Popular Virtual NIC

}  After the following I/O event
 mmio_write (MDIC [0x20], 0x8000)

Real NIC
}  Register ICS: 0x0

Virtual NIC
}  Register ICS: 0x200

Virtual-Physical Inconsistencies

Almost all virtual devices contain differences to their
physical peers.

How to detect the inconsistencies between physical and
virtual devices? [Blackhat Briefing USA 2013]

What about PCI Passthrough?

http://www.ibm.com/developerworks/library/l-pci-passthrough/

What about PCI Passthrough? (cont.)
}  Not Commonly used in Virtual Appliances.

}  Current practice often limited device passthrough to one VM.
¨  Things might change in the future with devices like NVIDIA GRID K2

}  Some Passthrough Implementation Can still be Detected

}  E.g. Intel NIC Virtualization
¨  Host runs PF functions driver, VM runs VF function driver.

How to resist VM/VA detection?

Prevent Virtual Appliance Detection
}  Difficult to Resist Root and Application Level Detection

}  Virtual devices have many inconsistencies with physical ones
}  Hardware virtualization support helps but often still leaves clues

}  To Resist Detection at Web/Application Scripts Level

}  Not too hard to fake simple display properties
}  To resist timing/performance based detection

}  Pretend to be a low-end/old device

}  Challenging for protect against targeted attacks

Summary
}  Detecting Virtual Appliances

}  Using Display Properties through Web Scripts
}  Using System Information through ActiveX
}  Using Device Inconsistencies

}  The Specialty of Display Devices in VA Detection
}  Have to expose to sandboxed applications
}  Many properties are useful for detection
}  Timing and performance aspects are hard to fake

Thanks!

kangli@uga.edu
ldpatchguard@gmail.com

