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The Virtualization World 
}  Popular Virtual Machine Platforms 

 
 



Virtual Machines versus Appliances 
 
}  Virtual Machines 

}  Generic guests  
}  Often run multiple 

Apps in one guest 
 

}  Virtual Appliances 
}  Specially built guests 
}  Optimized to specific applications 

}  Pre-configured OS and App stack 
}  Isolations 
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Why Detecting Virtual Appliances? 
 



http://www.cloudlinux.com/blog/clnews/vps-hot-or-not.php 

In the past  
 
Motivation to  
detect VMs … 



Why Detecting Virtual Appliances? 
 
}  Now, the Emerging Needs are: 

}  Avoid Malicious VM Emulators 
}  Is my program running on hardware or a VM rootkit? 

}  Evade Detection 
}  Is the program being evaluated in a specific VM environment? 



How to Detect Virtual Appliances? 
 



Detection of Virtual Appliances  

}  For Virtual Appliances that allow to run arbitrary programs  
}  Conventional VM detection technique applies 
}  A rich set of prior works 

 
http://strategictrends.ca/ 
http://comictan.com/ 



Detection of Virtual Appliances  

}  But what if the appliance is for a specific application? 
}  For example,  Browser,  PDF,  Office … 
}  The detection has to be done through application scripts. 
}  Most of the prior works on VM detection do not apply. 

 
http://www.hornungs-webshop.de/ http://bennisinc.wordpress.com/ 



Solution: 
 
Appliance Detection through Display Properties 
 

webserver.computoredge.com 



Why Focusing on Display Properties 
}  Display needs to be exported to the “sandbox-ed” 

applications. 

 
}  But, lack of hardware support for graphic virtualization 

}  Many appliance instances running in one physical box 
}  Difficult for PCI Passthrough to multiple VMs 

webserver.computoredge.com 



Virtual Appliance Detection Overview 
}  Goal: 

}  Detecting the use of VM by Display Properties 

}  Sample Approaches:  
}  Screen Properties 

}  Resolution, color depth, and refresh rate 

}  Support of “Advanced” Display Functions   
}  HTML5/WebGL 

}  Performance Measurement  
}  3D rendering capability 



Scenario #1: Detection Using Resolution 
}  Using Java to obtain list of display properties 

}  Screen Size, Refresh Rate, Color depth 

}  Example:  Windows 8 on a Lenovo PC,  VMware, and 
VirtualBox 

Host VMware 
Player 

VirtualBox 

Number of Resolution 
Supported 

38 25 4 

Refresh Rate 56, 59, 60, 70, 
72,75 

64 60 

Unique Screen Size 1041x1041 



Scenario #1: Detection Using Resolution 
}  How to Get Screen Properties  

Example: the Monitors methods in Adobe Javascript API 
 
}  Monitors Method 

}  Primary 
}  Secondary 
}  Tallest 
}  Widest 
}  … 

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf 

}  Monitor properties 
}  colorDepth 
}  isPrimary 
}  Rect  (boundary of virtual display) 
}  workRect 



Scenario #1: Detection Using Resolution 
}  How to Get Screen Properties  

Example: the Monitors methods in Adobe Javascript API 
 
}  Monitors Method 

}  Primary 
}  Secondary 
}  Tallest 
}  Widest 
}  … 

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf 

}  Monitor properties 
}  colorDepth 
}  isPrimary 
}  Rect  (boundary of virtual display) 
}  workRect 

More properties are available via the Monitors Method. 



Scenario #2: Detection Using the 
Support of HTML5 Features 

}  Virtual Appliance might Not bother to implement 
“advanced” graphic support for web scripts. 

}  Example:  Firefox 27.0.1 running on a Windows Host, 
VMware, and VirtualBox 



Scenario #2: Detection Using the 
Support of HTML5 Features 

Firefox 27.0.1 on Win 7 
Physical Host 

Firefox 27.0.1 on Win 7 
Virtualbox (with add-on) 

Same version of Firefox Browser in Host and VM 



Scenario #2: Detection Using the 
Support of HTML5 Features 

}  Virtual Appliance might Not bother to implement 
“advanced” graphic support for web scripts. 

}  No Support WebGL è Virtual Appliance 
}  Possible False Positives … 



Scenario #3: Detection based on 3D 
Performance 

}  Observations:  

}  Smooth 3D graphic display heavily relies on hardware support. 

}  Even with 3D support, browser performance in VM falls far 
behind modern host systems. 

}  Often, multiple instances of Virtual Appliances are running on 
the same physical box. 



Performance of Running this Script 

http://media.tojicode.com/q3bsp/ 

Quake 3 in WebGL 



Observing Frame Rate of Quake 3 

Chrome (3D) 

Chrome (no 3D) 

IE (3D) 

IE (no 3D) 
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Frame Rate for running the same web script 



Ability to Render Concurrent 3D Objects 

Concurrent VM Instances 
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Number of 3D objects rendered in a fixed frame rate (15 FPS) 

Chrome (3D) 

Chrome (no 3D) 

IE (3D) 

IE (no 3D) 



Scenario #3: Detection by 3D Performance 
}  Strategy 

}  Dynamically increase the number of 3D objects and detect the 
frame rate 
}  500 ~ 5000 Objects 
}  Expect to have FPS > 30 FPS 

}  Disguise test under popular games in WebGL 
}  E.g. Quake3 in WebGL 



Scenario #3: Detection by 3D Performance 
}  False Positives 

}  Slow Physical Machines 
}  Atom Box  < 500 objects, 15 FPS> 
}  Qualcomm Quad-core Table  < 500 objects, 30 FPS> 

}  Implication to Virtual Appliance Detection 



How to Get More Accurate VM Information? 



If VA Chooses to Enable Native Code 
}  Example:  ActiveX 

}  Close to run a user-level application  

}  Although not a good idea for security-aware users to enable,  
  

}  likely enabled in those appliances that analyze malware 

}  Likely lowered the Trustzone levels to enable automatic analysis 



Peek Host Info from ActiveX 
}  Using Predefined APIs 

}  WMI  (windows management instrumentation) 

}  WBEM (web-based enterprise management) 
}  Allow to grab systems, networks, devices information. 

}  Using Known Vulnerabilities in IE/ActiveX 
}  Beyond the scope of this talk 



Getting Host Device Info from ActiveX 
}  Using the SWbemLocator 

}  Scripting API from WMI 

 

… 
var locator  = new ActiveXObject("WbemScripting.SWbemLocator"); 
var service  = locator.ConnectServer("."); 
var properties = service.ExecQuery( 

    "SELECT * FROM Win32_DeviceMemoryAddress"); 
var e   = new Enumerator(properties); 
var p   = e.item(); 
… 
 
// Available Properties: Device Description,  Name,  Memory Address …   



Sample Output from Using SWbemLocator 



Sample Output from SWbemLocator 



Running on Host 



What if Appliance choose to emulate 
none-VM specific devices? 
 



What if Appliance choose to emulate 
none-VM specific devices? 
 
No Hypervisor names shown in Device 
and Drive info. 
 
Real device drivers are used. 
 



Popular Virtual Devices in VM 

}  Virtualbox  

}  NIC:  Intel PRO/1000 MT 
(82540EM) 

}  Audio:  ICH AC97 

}  IDE:  Intel 82371 PIIX4 IDE 

}  SATA: Intel 82801HBM/HEM 

 
 

}  Vmware Fusion 

}  NIC:  AMD PCnet32 LANCE 

}  Audio:  Ensoniq ES1371 

}  IDE:  Intel 82371 PIIX4 IDE 

}  SCSI: LSI Logic 53c1030 



Difficult to make the behavior of  
Virtual Device == Physical Device  



Virtual-Physical Inconsistency Example 
}  Intel PRO/1000 MT (82540EM) 

}  Popular Virtual NIC  

}  After the following I/O event 
 mmio_write (ICS [0xC8],  0x4) 

Real NIC 
}  Register ICS: 0x00000004  

 
 

Virtual NIC 
}  Register ICS: 0x80000004 



Virtual-Physical Inconsistency Example2 
}  Intel PRO/1000 MT (82540EM) 

}  Popular Virtual NIC  

}  After the following I/O event 
 mmio_write (MDIC [0x20],  0x8000) 

Real NIC 
}  Register ICS: 0x0  

 
 

Virtual NIC 
}  Register ICS: 0x200 



Virtual-Physical Inconsistencies 
 
Almost all virtual devices contain differences to their 
physical peers. 

How to detect the inconsistencies between physical and 
virtual devices? [Blackhat Briefing USA 2013] 



What about PCI Passthrough? 

http://www.ibm.com/developerworks/library/l-pci-passthrough/ 



What about PCI Passthrough?  (cont.) 
}  Not Commonly used in Virtual Appliances.  

}  Current practice often limited device passthrough to one VM.   
¨  Things might change in the future with devices like NVIDIA GRID K2 

 
}  Some Passthrough Implementation Can still be Detected 

}  E.g. Intel NIC Virtualization 
¨  Host runs PF functions driver,  VM runs VF function driver. 



How to resist VM/VA detection? 
 



Prevent Virtual Appliance Detection 
}  Difficult to Resist Root and Application Level Detection 

}  Virtual devices have many inconsistencies with physical ones 
}  Hardware virtualization support helps but often still leaves clues 

 
 
}  To Resist Detection at Web/Application Scripts Level 

}  Not too hard to fake simple display properties 
}  To resist timing/performance based detection 

}  Pretend to be a low-end/old device 

}  Challenging for protect against targeted attacks 

 
 



Summary  
}  Detecting Virtual Appliances 

}  Using Display Properties through Web Scripts 
}  Using System Information through ActiveX  
}  Using Device Inconsistencies 
 

}  The Specialty of Display Devices in VA Detection 
}  Have to expose to sandboxed applications 
}  Many properties are useful for detection 
}  Timing and performance aspects are hard to fake 

 



Thanks! 

kangli@uga.edu 
ldpatchguard@gmail.com 

 


